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It is shown that the time-dependent canonical perturbation theory in classical mechanics has
unsatisfactory features when dealing with electromagnetic perturbed fields (the perturbed vector
potential A # 0). As a numerical apparatus, the theory relates to gauge-dependent errors larger
than expected. As an analytic apparatus, the theory is involved in unphysical concepts and yields
inherently non-gauge-invariant formalisms. By defining the root cause of the problem, an alternative

approach is accordingly introduced.
PACS number(s): 03.20.+i, 02.60.—x

The time-dependent canonical perturbation theory is
now considered as conventional wisdom; the theory has
been accepted by classical books [1,2] and applied to
many physical fields, such as celestial mechanics, plasma
physics, and astrophysics.

To invoke the theory, a canonical transformation

»,9 — a(p,q), B(p, 9), (1)

where the variables a, 8 are invariants in the unperturbed
system, needs to be defined. Under perturbations the
invariant variables evolve in time according to (we will
use 7 to stand for both a and 3 throughout the paper)

¥ = ly, H] = [v, Hly=v., (2

where ~, represents the unperturbed constant value ot
~. With Eq. (2), the system’s behavior can be readily
investigated in a numerical or analytic way.

In usual situations the perturbation theory possesses
many nice features and works very well. The defined
variables form a new phase space and the trajectory of
the perturbed system in the space is just a nearby or-
bit around the fixed point describing the unperturbed
system. Based on this picture, not only the system
becomes approximately solvable but, more importantly,
those variables, very often defined as meaningful funda-
mental quantities, such as energy, momentum, angular
momentum, magnetic moment, and so on, provide a con-
ceptually convenient frame to observe the system’s dy-
namics and the variables’ evolution equation (2) provides
a universally applicable means to describe the dynamics.
Those features together with other things, such as Dar-
boux’s theorem to guarantee the existence of the phase
space [2] and the invariance of the phase-space volume
with canonical transformations, all make the theory more
applicable.

While the theory seemed flawless, there were some dis-
cussions revealing the necessity to think of the problem
differently. Littlejohn, in his paper [3,4] mainly related
to particle motion in a magnetic field, pointed out that
with the use of the vector potential A the standard the-
ory mixed ordering and proposed to use an elegant Lie-
transformation approach [5-7] to formulate the problem.
In one of our earlier papers [8] we expressed that the
standard theory had certain technical drawbacks.

Despite these efforts to somewhat discredit the stan-
dard theory, the theory is not seriously challenged in the
sense that it is almost uniformly believed that as long as
the ordering of the perturbed Hamiltonian H is in line
the theory holds. Many papers regularly using the the-
ory keep appearing in the literature and, in particular,
there is no direct and relevant analysis (as we know) to
pinpoint and investigate the important gauge-invariance
problem of the theory.

It is quite obvious that in the standard theory the per-
turbed Hamiltonian H, written for a charged particle in
electromagnetic fields as (m = ¢ = e = 1 in this paper)

- ~ A? ~
H=—(p-A)) A+ +8& (3)

is not uniquely defined since the gauge potential fields
A, ® may be transformed into a different form,

A A+Vy, ®— d—8f, (4)
where f represents any differentiable function. In this
context, Eq. (2) yields different equations, at least for-
mally, when different gauge choices are adopted. A fun-
damental notion in physics is that a generally correct
theory must be gauge invariant in regard to its results.
Thus questions arise: Is the standard perturbation the-
ory gauge invariant? Or, if it is not stringently gauge in-
variant, can one define some conditions under which the
theory may still be accepted as a gauge-invariant one?

In this paper, we will show that as a numerical ap-
paratus the theory yields gauge-invariant results only in
a quite limited sense and that as an analytic apparatus
the theory relating to unphysical quantities is inherently
non-gauge-invariant. After defining the root cause of the
problem we propose an almost-canonical approach which
is. formulated in terms of ®, A and still gauge invariant.

We proceed in the following way. We examine the the-
ory in illustrating examples, and then analyze emerging
difficulties in light of the related mathematical and physi-
cal arguments. To put the problem in clearer perspective,
we only discuss the situations in which the perturbed
Hamiltonian H is relatively small.

For simplicity, a one-dimensional harmonic oscillator,
whose Hamiltonian reads
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HO = 2 + 2 ) ( )

is chosen as the example of the unperturbed system; the
expression

Dz = V2aw, cos(B + wct), ¢r = /20 /w,sin(B + w.t)

(6)

virtually defines the new variables «, 3, which take the
constant values o, 8. in the unperturbed system.
We note that with the transformation

A —A+a, (7)

where a is a constant vector comparable to A in mag-
nitude the perturbed Hamiltonian of Eq. (3) remains to
be of the same smallness, but the outcome of the theory
changes significantly. In particular, if the zero pertur-
bation field {A; = ¢,® = 0} is applied, the oscillator
will be perturbed substantially according to the theory.
To avoid such irrational results, we propose, only for the
sake of discussing the standard theory, that the initial
condition

A(to,q(to)) =0 (8)

should be imposed upon the standard theory, although
the condition literally means some novel constraints,
such as that some usual forms for perturbed fields, like
Az = eexp(—iwt + ikq,), cannot be used and that when
dealing with a multiparticle system one generally needs
to use different perturbed vector potentials for different
particles.

_We now assume that the oscillator is perturbed by
E = ¢psin(wt — kq), for which the two types of per-
turbed gauge fields {® = —eg cos(wt — kqz)/k, Ay = 0}
and {® = 0, A, = eg[cos(wt — kq;) — 1]/w} are supposed
to be usable. By setting 8. = 0 and to = 0, the condi-
tion Eq. (8) is satisfied here. Then, trajectory solutions
4z (t) = gz (a(t), B(t)) can be obtained by integrating Eq.
(2) and applying Eq. (6). Figures 1 and 2, with param-
eters given in the captions, illustrate the numerical re-
sults [for clearness the figures actually show g, (¢) —g2(t),
where ¢3(t) describes the unperturbed trajectory]. In
the figures, the trajectories with the two different gauge
choices stick to each other at the beginning, and after a
relatively short time they diverge significantly. With the
help of other numerical algorithms, such as the Runge-
Kutta method, we find that the result with A = 0 is very
accurate while the result with A # 0 is not.

Before analyzing the problem, we recall a similar per-
turbation method in mathematics which can be symbol-
icly expressed in the following way. A dynamic system
described by a set of 2¢ equations

gj ::efj(t’%aqi) (j=1,...,2i) (9)
can be solved approximately by carrying out the integral
gﬂﬂzw0w+/}hwwﬂmmqmmswmﬁ’

(10)
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FIG. 1. Trajectory difference g¢(t) — ¢3(t) by the two
gauge choices. Parameters with the perturbed field are
e = 0.015, w = 0.3, k = —0.3. Parameters with the os-
cillator are w. = 1.0, ac = 0.5, and B. = 0. The solid line and
the dotted line illustrate the results with the first and second
gauge choice, respectively.

where the set of ¢?(t),¢?(t) is the solution of the equa-
tions §; = 0, which essentially describes the unperturbed
orbit of the system. Exactly speaking, the integral should
be taken along the true orbit of the perturbed system;
however, integrating along the unperturbed orbit yields
a rather small error, since the system only slightly and
slowly leaves its unperturbed state (which reflects a phys-
ical fact that a dynamic system must have inertia).

The standard theory is supposed to be nothing but
the aforementioned method in the Hamiltonian language.

0.002 1

q(t)-q’(t)

-0.002 - -1

0 20 40 60

FIG. 2. Trajectory difference g,(t) — ¢2(t) by the two
gauge choices. Parameters with the perturbed field are
€0 = 0.001, we = 0.1, k = —0.1. Other parameters and the
meaning of the lines are the same as in Fig. 1.
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Indeed, when A = 0 the equation set of v = v, describes
an unperturbed orbit. However, when A is nonzero, there
is a subtle change in the definition system. The variable
~ becomes

v(p,q) =v(@+ Ao+ A,q), (11)

so that the orbit of v = ., being deformed by the involve-
ment of A, is no longer the unperturbed one and an extra
error (using the unperturbed orbit has brought in an er-
ror already) is introduced. By noting v = v. + (3p7) - A
here, we can use the following expression to characterize
the extra error with integrating Eq. (2)

/ {Bolv, H]},, - Adt. (12)

In some situations, the gauge-dependent error may grow
almost linearly with respect to time (Figs. 1 and 2 man-
ifestingly show the growth pattern in our exemplary
cases), and imposing the additional condition Eq. (8)
can only ensure the gauge invariance at the initial stage
[A(t —to) ~ €.

As an analytic apparatus, the theory has more serious
difficulties in the sense that it directly relates to unphys-
ical concepts and misleading formalisms. For instance,
the invariant o = (p2 + w2¢2)/2 defined in Eq. (6) can
be easily interpreted as energy of the oscillator, and the
concept works smoothly if A = 0. However, the inter-
pretation runs into trouble if we allow the vector poten-
tial A to be nonzero. Assuming there is a perturbative
electric field £, = ¢, we have under the gauge choice
D = —€qy, Az =0

& = |a, H] = eps, (13)
or under the gauge choice ® = 0, 4, = —et
& = [a, H] = etw?q,. (14)

The two results are very different and sometimes get dif-
ferent signs (g, P are sometimes opposite in sign during
the oscillation). If « is interpreted as “energy,” the en-
ergy may decrease while the system actually obtains en-
ergy from the perturbed force. Knowing the basic phys-
ical fact that a time derivative of energy should be ex-
pressed as E-v = —(0;A+94®) - v, we find that Eq. (13)
gives a correct result while Eq. (14) does not. More gen-
erally, when defining various energy forms, such as p?/2,
(p? +w?q?)/2, and (p — Ag)?/2, for various systems and
writing their evolution equations with Eq. (2), one should
be able to find that the perturbed electric force —8;A
fails to appear expectantly in all the situations. There ex-
ist similar conceptual problems when dealing with other
kinds of quantities defined by the theory.

We go back to the crucial definition Eq. (1) to see
why such things happen. Due to the physicists’ interest,
quantities defined by Eq. (1) are basicly physical and
observable quantities in an unperturbed system, which
means that a canonical variable, appearing to be defined
by (A, o), is essentially a gauge-invariant quantity ex-
pressed by

v =7(q, 4, Eo(a), Bo(q)) +C, (15)

where C is an unimportant constant. However, when the
perturbed system is perturbed the variable becomes

which can be expressed neither by Eq. (15) nor by

v(a, 4, Eo(q) + E(q), Bo(q) + B(q)) + C. (17)

This simple fact shows that mixing up physical and un-
physical quantities is the reason why the conceptual dif-
ficulties exist. With such ill-defined variables, either
Eq. (13) or (14), being equivalent to the exact Hamil-
tonian formula

Oy

== +[1,Hlpq (18)
ot P

in the circumstances, is capable of yielding any value
from negative to positive according to gauge choices (we
say that those variables have no physical inertia).

It may now be clear that the standard theory cannot
be invoked to investigate the evolution of physical quan-
tities when A # 0. However, there may be one remaining
question: does it make sense to use the theory to define
variables without associating them with physical quanti-
ties and, then, to formally formulate a perturbed system
even when A # 07 The answer to the question is basicly
negative. In such methodology, both the phase space and
the trajectory of the system in the space possess a con-
ceptually misguiding nature and one obtains, very often
without consciousness, an inherently non-gauge-invariant
formalism.

To avoid the difficulties in both numerical and analytic
regimes the two following requirements for defining a new
variable should be adopted. (1) When disregarding per-
turbations the variable can be reduced to a corresponding
quantity in the unperturbed system. (2) Apart from an
unimportant constant, the variable is an observable phys-
ical quantity with or without perturbations involved.

These two requirements limit the way to set up a per-
turbation theory. In the standard approach, the canoni-
cal variable system defined by Eq. (1) fulfills the first re-
quirement, but not the second one. Here, we very briefly
propose (see more details in Ref. [8]) an alternative ap-
proach to complete this paper and to show the signifi-
cance of the two requirements.

The basic variables in the new approach, other than
the usual canonical variables q and p, are

qQ = q, Po =V + Ao. (19)
A transformation, formally canonical,

do; Po — a0, Po (20)

defines new variables «pg, Bp which take constant values
in the unperturbed system. It is easy to see that since
the definition process has nothing to do with A the two
requirements mentioned above are virtually satisfied.

An immediate consequence of the new variable system
is new forms for both the unperturbed and perturbed-



766 BRIEF REPORTS 47

Hamiltonians. The Hamiltonian H = 2(p — A)2 + & is
now divided into

Hy = %(po — A0)2 + Py, H=293. (21)

It is important to note that ag, By constitute a canoni-
cal set only in terms of pg, qo (with this reason, one may
name them neocanonical variables) but not in terms of
p,q. This prohibits us from using Eq. (2) even after
rewriting the unperturbed and perturbed Hamiltonians.
Starting with Eq. (18) and noting p = po + A, we have

% = [v0,q0] - BeA + [0, D]
+{[70, 0] - [A, Ho] — [0, A] - [qo, Ho]}, (22)

where the Poisson brackets are given in terms of the vari-
able system (po,qo) or (cg,Bo). It is almost trivial to
check that Eq. (22) is gauge invariant and all the diffi-

culties are now resolved.

The present formalism is physically transparent. We
can easily identify the terms representing the electric
force and Lorentz force in Eq. (22). As an example of
theoretical applications, we note that when energy is de-
fined as € = 2(po — Ao)? + ®o and its evolution is under
investigation the last term in Eq. (22) simply disappears,
which proves a physical fact that the Lorentz force does
not affect energy of a system. By contrast, the proof is
not possible with the standard theory.
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